
MPEG-2 Decoder User Guide

Koenraad De Vleeschauwer
kdv@kdvelectronics.eu

April 14, 2009

Copyright Notice

Copyright c©2007-2009, Koenraad De Vleeschauwer.
Redistribution and use in source (LYX format) and ‘compiled’ forms (PDF, PostScript,

HTML, RTF, etc.), with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code (LYX format) must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF,
PostScript, HTML, RTF, and other formats) must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this documentation without specific prior written permission.

This documentation is provided by the author “as is” and any express or
implied warranties, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose are disclaimed. In
no event shall the author be liable for any direct, indirect, incidental,
special, exemplary, or consequential damages (including, but not limited to,
procurement of substitute goods or services; loss of use, data, or profits;
or business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or
otherwise) arising in any way out of the use of this documentation, even
if advised of the possibility of such damage.

MPEG-2 License Notice

Commercial implementations of MPEG-1 and MPEG-2 video, including shareware, are
subject to royalty fees to patent holders. Many of these patents are general enough such
that they are unavoidable regardless of implementation design.

MPEG-2 intermediate product. Use of this product in any manner that
complies with the MPEG-2 standard is expressly prohibited without a
license under applicable patents in the MPEG-2 patent portfolio, which
license is available from MPEG LA, L.L.C., 250 Stelle Street, suite 300,
Denver, Colorado 80206.

Contents

1 Processor Interface 6
1.1 Decoder Block Diagram . 6
1.2 Ports . 8

1.2.1 Clocks . 10
1.2.2 Reset . 10
1.2.3 Stream Input . 10
1.2.4 Register File Access . 10
1.2.5 Memory Controller . 10
1.2.6 Memory Request FIFO . 11
1.2.7 Memory Response FIFO . 11
1.2.8 Video Output . 11
1.2.9 Test Point . 12
1.2.10 Status . 12

1.3 Processor Tasks . 13
1.4 Registers . 13
1.5 Read-only Registers . 16
1.6 On-Screen Display . 17
1.7 Frame Store . 19
1.8 Video Modeline . 19
1.9 Interrupts . 22
1.10 Watchdog . 23
1.11 Trick mode . 25
1.12 Test point . 27

2 Decoder Sources 28
2.1 Source Directory Structure . 28
2.2 MPEG2 Decoder . 28

2.2.1 FIFO sizes . 29
2.2.2 Dual-ported memory and FIFO models 31
2.2.3 Memory mapping . 32
2.2.4 Modeline . 33
2.2.5 Inverse Discrete Cosine Transform 33
2.2.6 Bilinear chroma upsampling . 34

2.3 Simulation . 34
2.3.1 Icarus Verilog Simulation . 34
2.3.2 Modelsim Behavioral Simulation 39

4 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics Contents

2.3.3 Modelsim Timing Simulation . 39
2.3.4 Conformance Tests . 41

2.4 Xilinx ML505 Implementation . 41
2.4.1 Ethernet Interface . 41
2.4.2 Memory Controller . 43
2.4.3 DVI Video Output . 43
2.4.4 Fan Controller . 44
2.4.5 Xilinx ISE Synthesis . 44

2.5 Tools . 45
2.5.1 mpeg2ether Utility . 45
2.5.2 Logic Analyzer . 48
2.5.3 Finite State Machine Graphs . 48
2.5.4 IEEE-1180 IDCT Accuracy Test 49
2.5.5 Reference software decoder . 49
2.5.6 MPEG2 Test Streams . 50

MPEG2 Decoder User Guide April 14, 2009 5

1 Processor Interface

An MPEG2 decoder, implemented in Verilog, is presented. Chapter 1 describes the
decoder for the software engineer who wishes to write a device driver.

1.1 Decoder Block Diagram

Figure 1.1 shows the MPEG2 decoder block diagram. An external source such as a
DVB tuner or DVD drive provides an MPEG2 stream. The video elementary stream is
extracted and sent to the decoder. The video buffer acts as a fifo between the incoming
MPEG2 video stream and the variable length decoder. The video buffer evens out
temporary differences between the bitrate of the incoming MPEG2 bitstream and the
bitrate at which the decoder parses the bitstream.

The MPEG2 codec is a variable length codec; codewords which occur often occupy
less bits than codewords which occur only rarely. Getbits provides a sliding window over
the incoming stream. As the codewords have a variable length, the sliding window moves
forward a variable amount of bits at a time.

Variable length decoding does the actual parsing of the bitstream. Variable length
decoding stores stream parameters such as horizontal and vertical resolution, and produces
run/length values and motion vectors. Run/length values and motion vectors are different
ways of describing an image. The run/length values describe an image as compressed
data contained within the bitstream. The motion vectors describe an image as a mosaic
of already decoded images.

Run-length decoding, inverse quantizing and inverse discrete cosine transform decom-
press the run/length values.

Motion compensation retrieves already decoded images from memory and applies the
motion vector translations.

The reconstructed image is the sum of the decompressed run/length values and
translated pieces of already decoded images. The reconstructed image is stored in the
frame store for later display and reference.

The frame store receives requests to store and retrieve pixels from three different
sources:

• motion compensation, which writes reconstructed image frames to memory

• chroma resampling, which reads reconstructed image frames from memory for
displaying

6 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

MPEG2 Input

Video Buffer

Getbits

Variable Length
Decoding

Run/Level Decoding,
Inverse Quantizing,
Inverse ZigZag

Inverse Discrete
Cosine Transform

Motion
Compensation

Frame StoreDot Clock

Video Sync
 and Timing

Memory
Controller

Chroma
Resampling

RAMMixer

On-Screen
Display

YUV to RGB

Digital Video Out

Elementary
Stream

Elementary
Stream

bitfields

Run/Level
ValuesMotion

Vectors

DCT
Coefficients

blocks

macroblocks

Frames

Sync YUV, OSD

YUV, OSD, Sync

YUV, Sync

RGB, YUV, Sync

Figure 1.1: Decoder Block Diagram

MPEG2 Decoder User Guide April 14, 2009 7

1. Processor Interface kdv electronics

• writes to the on-screen display, under software control.

Some of these blocks have multiple accesses to the frame store. Within the MPEG2
decoder a total of six memory read or write requests may occur simultaneously. The
frame store prioritizes these requests and serializes them into a single stream of memory
read/write requests, which is sent to the memory controller.

The memory controller is external to the MPEG2 decoder. The memory controller
handles the low-level details of interfacing with the memory chips. If memory is static
RAM, interfacing requires little more than a buffer; dynamic memory requires a more
complex controller.

The MPEG2 decoder accepts 4:2:0 format video, in which color and brightness infor-
mation have a different resolution: color information (chrominance) is sent at half the
horizontal and half the vertical resolution of brightness information (luminance). This
makes sense because the human eye uses different mechanisms to perceive color and
brightness; and the different mechanisms used have different sensitivities.

Sending color information at half the horizontal and half the vertical resolution of
brightness information implies the reconstructed image in the frame store has only one
color pixel for every four brightness pixels. Assigning the same color information to the
four pixels of brightness information would result in a chunky image. Chroma resampling
does horizontal and vertical interpolation of the color information, resulting in a smooth
color image.

A dot clock marks the frequency at which pixels are sent to the display. The dot clock
is external to the MPEG2 decoder and can be either free running or synchronized to
another clock.

The video synchronization generator counts pixels, lines and image frames at the dot
clock frequency. At any given moment, the video synchronization generator knows the
horizontal and vertical coordinate of the pixel to be displayed.

The pixels generated in chroma resampling and the coordinates generated by the video
synchronization generator are joined in the mixer. The result is a stream of pixels, at
the current horizontal/vertical coordinate, at the dot clock frequency.

At this point the on-screen display is added. The on-screen display has the same
resolution as the video and uses a 256-color palette. Software can choose to put the
on-screen display on top, completely hiding the video; or to blend on-screen display and
video, as if they were two translucent glass plates.

The MPEG2 decoder works with chrominance (color) and luminance (brightness)
information throughout. The final step is converting chrominance and luminance to red,
green and blue in yuv2rgb. The red, green and blue information is the output of the
decoder.

1.2 Ports

Table 1.2 lists MPEG2 decoder input/output ports.

8 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

Port Bits Description I/O Clock
clk 1 Decoder clock I -

dot clk 1 Video clock I -
mem clk 1 Memory Controller clock I -
rst 1 Reset I -

stream data 8 Program stream data I clk
stream valid 1 stream data valid I clk

busy 1 Decoder busy flag O clk
reg addr 4 Register address I clk
reg dta in 32 Register write data I clk
reg wr en 1 Register write enable I clk
reg dta out 32 Register read data O clk
reg rd en 1 Register read enable I clk
error 1 Decoding error flag O clk

interrupt 1 Interrupt O clk
watchdog rst 1 Watchdog-generated Reset O clk

r 8 Red O dot clk
g 8 Green O dot clk
b 8 Blue O dot clk
y 8 Y Luminance O dot clk
u 8 Cr Chrominance O dot clk
v 8 Cb Chrominance O dot clk

pixel en 1 Pixel enable O dot clk
h sync 1 Horizontal synchronization O dot clk
v sync 1 Vertical synchronization O dot clk
c sync 1 Composite synchronization O dot clk

mem req rd cmd 2 Memory request command O mem clk
mem req rd addr 22 Memory request address O mem clk
mem req rd dta 64 Memory request data O mem clk
mem req rd en 1 Memory request read enable I mem clk

mem req rd valid 1 Memory request valid O mem clk
mem res wr dta 64 Memory response data I mem clk
mem res wr en 1 Memory response enable I mem clk

mem res wr almost full 1 Memory response almost full O mem clk
testpoint dip en 1 Testpoint dip switches enable I -
testpoint dip 4 Testpoint dip switches I -
testpoint 34 Logical analyzer test point O -

Table 1.2: Ports

MPEG2 Decoder User Guide April 14, 2009 9

1. Processor Interface kdv electronics

1.2.1 Clocks

Up to three different clocks may be supplied to the MPEG2 decoder.

clk Main decoder clock, input.

dot clk Video clock, input. Variable frequency, varying with current video modeline.

mem clk Memory Controller Clock, input.

The decoder produces pixels at a maximum rate of one per clk cycle.

1.2.2 Reset

rst Asynchronous reset, input, active low, internally synchronized.

1.2.3 Stream Input

stream data 8-bit elementary stream data, input, synchronous with clk, byte aligned.
The elementary stream is an MPEG2 4:2:0 video elementary stream.

stream valid elementary stream data valid, input, synchronous with clk. Assert when
stream data valid.

busy busy, active high, output, synchronous with clk. When high, indicates
maintaining stream valid high will overflow decoder input buffers.

1.2.4 Register File Access

reg addr 5-bit register address, input, synchronous with clk.

reg dta in 32-bit register data in, input, synchronous with clk.

reg wr en register write enable, input, active high, synchronous with clk. Assert to
write reg dta in to reg addr.

reg dta out 32-bit register data out, output, synchronous with clk.

reg rd en Active high register read enable, input, synchronous with clk. Assert to
obtain the contents of register reg addr at reg dta out.

1.2.5 Memory Controller

The interface between MPEG2 decoder and memory controller consists of two fifos. The
memory request FIFO sends memory read, write or refresh requests from decoder to
memory controller. The memory response FIFO sends data read from memory controller
to MPEG2 decoder. The data from the memory read requests appears in the memory
response FIFO in the same order as the memory reads were issued in the memory request
FIFO.

10 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

mem req rd cmd Mnemonic Description
0 CMD NOOP No operation
1 CMD REFRESH Refresh memory
2 CMD READ Read 64-bit word
3 CMD WRITE Write 64-bit word

Table 1.3: Memory controller commands

1.2.6 Memory Request FIFO

mem req rd cmd memory request command, output, synchronous with mem clk. Valid
values are defined in table 1.3.

mem req rd addr 22-bit memory request address, output, synchronous with mem clk.

mem req rd dta 64-bit memory request data, output, synchronous with mem clk.

mem req rd en memory request read enable, input, active high, synchronous with
mem clk.

mem req rd valid memory request read valid, output, active high, synchronous
with mem clk. Indicates when mem req rd cmd, mem req rd addr and
mem req rd dta have meaningful values.

1.2.7 Memory Response FIFO

mem res wr dta 64-bit memory response write data, input, synchronous with mem clk.

mem res wr en memory response write enable, input, active high, synchronous with
mem clk. Assert to write mem res wr dta to the memory response FIFO.

mem res wr almost full memory response write almost full, output, active high, syn-
chronous with mem clk. When high, indicates maintaining mem res wr en
high will overflow the memory response FIFO. The current clock cycle can
be completed without overflowing the memory response FIFO.

1.2.8 Video Output

r red component, output, synchronous with dot clk.

g green component, output, synchronous with dot clk.

b blue component, output, synchronous with dot clk.

y Y luminance, output, synchronous with dot clk.

u Cr chrominance, output, synchronous with dot clk.

v Cb chrominance, output, synchronous with dot clk.

MPEG2 Decoder User Guide April 14, 2009 11

1. Processor Interface kdv electronics

pixel en pixel enable, output, active high, synchronous with dot clk. When pixel en
is high, r, g, b, y, u and v are valid; when pixel en is low video is blanked.

h sync horizontal synchronization, output, active high, synchronous with dot clk.

v sync vertical synchronization, output, active high, synchronous with dot clk.

c sync composite synchronization, output, active low, synchronous with dot clk.

1.2.9 Test Point

The decoder provides a test point for connecting a logic analyzer. The signals available
at the test point can be selected either by software control, or using dip switches. The
signals available at the test point are not defined as part of this specification, may vary
even for implementations with the same status register version number and are subject
to change without notice. See Verilog source probe.v for details.

testpoint dip en 1-bit input. If testpoint dip en is high, the registers visible
at testpoint are selected using testpoint dip. If testpoint dip en
is low, the registers visible at testpoint output are selected using the
testpoint sel field of register 15.

testpoint dip 4-bit input. testpoint dip selects test point output if
testpoint dip en is high.

testpoint 34-bit output. testpoint is a test point to connect a 34-channel logic
analyzer probe to the MPEG2 decoder. Up to 16 different sets of signals
are available, hardware selectable using the testpoint dip dip switches or
software selectable by writing to register 15. Any clocks present are on bits
32 and/or 33; bits 0 to 31 are data only. Bits 0 to 31 can also be accessed by
software, by reading register 15.

1.2.10 Status

error error, output, active high, synchronous with clk. Indicates variable length
decoding encountered an error in the bitstream.

interrupt interrupt, output, active high, synchronous with clk. Reading the status
register allows software to determine the cause of the interrupt, and will clear
the interrupt.

watchdog rst watchdog-generated reset signal, output, active low, synchronous with
clk. Normally high; low during one clock cycle if the watchdog timer expires.

12 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

1.3 Processor Tasks

To decode an MPEG-2 bitstream, the processor should execute the following tasks, in
order:

1. Initialize the horizontal, horizontal sync, vertical, vertical sync and video mode
registers with reasonable defaults. Clear osd enable, picture hdr intr en and
frame end intr en. Set the video ch intr en flag.

2. Start feeding the MPEG-2 bitstream to the stream data port of the decoder.

3. The decoder will issue an interrupt when video resolution or frame rate changes.
Whenever the decoder issues an interrupt, clear the interrupt by reading the status
register. Read the size, display size and frame rate registers. Calculate a new
modeline, change dot clock frequency if necessary, and write the new video timing
parameters to the horizontal, horizontal sync, vertical, vertical sync and video mode
registers.

4. At bitstream end, pad the stream with 8 times hex 000001b7, the sequence end
code (ISO/IEC 13818-2, par. 6.2.1, Start Codes).

If the On-Screen Display (OSD) is used, the processor should execute the following tasks
as well:

1. Initialize the On-Screen Display color look-up table.

2. Wait until horizontal size and vertical size have meaningful values.

3. Write to the On-Screen Display.

4. Set osd enable to one.

5. If a video change interrupt occurs, and horizontal size or vertical size has
changed, rewrite the On-Screen Display.

Writing to the OSD is described in detail on page 17. Interrupt handling is treated on
page 22.

1.4 Registers

The processor interface to the decoder consists of two times 16 32-bit registers. These
registers can be divided in 16 read-mode registers (Table 1.4) and 16 write-mode registers
(Table 1.5). The read-mode registers allow reading decoder status, while the write-mode
registers allow setting video timing parameters and writing to the On-Screen Display
(OSD).

MPEG2 Decoder User Guide April 14, 2009 13

1. Processor Interface kdv electronics

register bits content read/write
0 version 15-0 version r
1 status 15-8 matrix coefficients r

7 watchdog status r
6 osd wr en r
5 osd wr ack r
4 osd wr full r
3 picture hdr r
2 frame end r
1 video ch r
0 error r

2 size 29-16 horizontal size r
13-0 vertical size r

3 display size 29-16 display horizontal size r
13-0 display vertical size r

4 frame rate 15-12 aspect ratio information r
11 progressive sequence r

10-6 frame rate extension d r
5-4 frame rate extension n r
3-0 frame rate code r

f testpoint 31-0 testpoint r

Table 1.4: Read-mode Registers

14 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

register bits content read/write
0 stream 15-8 watchdog interval w

3 osd enable w
2 picture hdr intr en w
1 frame end intr en w
0 video ch intr en w

1 horizontal 27-16 horizontal resolution w
11-0 horizontal length w

2 horizontal sync 27-16 horizontal sync start w
11-0 horizontal sync end w

3 vertical 27-16 vertical resolution w
11-0 vertical length w

4 vertical sync 27-16 vertical sync start w
11-0 vertical sync end w

5 video mode 27-16 horizontal halfline w
2 clip display size w
1 pixel repetition w
0 interlaced w

6 osd clt yuvm 31-24 y w
23-16 u w
15-8 v w
7-0 osd clt mode w

7 osd clt addr 7-0 osd clt addr w
8 osd dta high 31-0 osd dta high w
9 osd dta low 31-0 osd dta low w
a osd addr 31-29 osd frame w

28-27 osd comp w
26-16 osd addr x w
10-0 osd addr y w

b trick mode 10 deinterlace w
9-5 repeat frame w
4 persistence w

3-1 source select w
0 flush vbuf w

f testpoint 3-0 testpoint sel w

Table 1.5: Write-mode Registers

MPEG2 Decoder User Guide April 14, 2009 15

1. Processor Interface kdv electronics

1.5 Read-only Registers

version contains a non-zero FPGA bitstream (hardware) version number. Software
should at least print a warning ‘‘Warning: hardware version (%i.%i)
more recent than software driver’’ if the hardware version is higher
than expected.

picture hdr is set whenever an picture header is encountered in the bit-
stream. picture hdr is cleared whenever the status register
is read. In a well-behaved MPEG-2 stream, horizontal size,
vertical size, display horizontal size, display vertical size,
aspect ratio information and frame rate will have meaningful values
when a picture header is encountered.

frame end is set when video vertical synchronization begins. frame end is cleared
whenever the status register is read.

video ch is set whenever video resolution or frame rate changes. video ch is cleared
whenever the status register is read.

error is set when variable length decoding cannot parse the bitstream. error is
cleared whenever the status register is read.

watchdog status is high if the watchdog timer expired. watchdog status is cleared
whenever the status register is read.

horizontal size is defined in ISO/IEC 13818-2, par. 6.2.2.1, par. 6.3.3.

vertical size is defined in ISO/IEC 13818-2, par. 6.2.2.1, par. 6.3.3.

display horizontal size is defined in ISO/IEC 13818-2, par. 6.2.2.4, par. 6.3.6.

display vertical size is defined in ISO/IEC 13818-2, par. 6.2.2.4, par. 6.3.6.

aspect ratio information is defined in ISO/IEC 13818-2, par. 6.3.3.

matrix coefficients is defined in ISO/IEC 13818-2, par. 6.3.6.

frame rate extension n is defined in ISO/IEC 13818-2, par. 6.3.3, par. 6.3.5.

frame rate code is defined in ISO/IEC 13818-2, par. 6.3.3, Table 6-4.

progressive sequence is defined in ISO/IEC 13818-2, par. 6.3.5.

frame rate extension d is defined in ISO/IEC 13818-2, par. 6.3.3, par. 6.3.5.

16 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

osd clt mode Comment
xxx00000 alpha = 0/16
xxx00001 alpha = 1/16
xxx00010 alpha = 2/16
xxx00011 alpha = 3/16
xxx00100 alpha = 4/16
xxx00101 alpha = 5/16
xxx00110 alpha = 6/16
xxx00111 alpha = 7/16
xxx01000 alpha = 8/16
xxx01001 alpha = 9/16
xxx01010 alpha = 10/16
xxx01011 alpha = 11/16
xxx01100 alpha = 12/16
xxx01101 alpha = 13/16
xxx01110 alpha = 14/16
xxx01111 alpha = 15/16
xxx11111 alpha = 16/16
xx0xxxxx attenuate video pixel by alpha
xx1xxxxx alpha blend osd and video pixel
00xxxxxx display video pixel
01xxxxxx display attenuated/alpha blended pixel
10xxxxxx display osd pixel
11xxxxxx display blinking osd pixel

Table 1.6: On-Screen Display Modes

1.6 On-Screen Display

The OSD has the same resolution and aspect ratio as the MPEG-2 video being displayed.
If no MPEG-2 video is being displayed, the OSD is undefined. Note feeding the decoder
a simple MPEG-2 sequence header with horizontal size and vertical size already
satisfies the requirements for using the OSD.

The OSD is only shown if there is video output. If one wishes to display an OSD
when no MPEG2 video is being reproduced, video output can be forced by setting
source select to 4, 5, 6 or 7.

The OSD may use up to 256 different colors. The OSD color lookup table (CLT) stores
y, u, v and osd clt mode data for each color. The y, u and v values are interpreted
as defined by matrix coefficients. The osd clt mode value determines the color
displayed according to Table 1.6. The different modes combine osd and video in various
ways:

• video. This is the normal mode of operation.

MPEG2 Decoder User Guide April 14, 2009 17

1. Processor Interface kdv electronics

• attenuated video. 16 discrete levels of attenuation can be used to fade video in or
out.

• on-screen display.

• blend of on-screen display and video. 16 discrete levels of translucency.

• blinking on-screen display. Alternates between osd pixel and attenuated/alpha
blended video pixel with a frequency of about one second.

osd enable determines whether the On-Screen Display is shown or not. If osd enable
is low, the On-Screen Display is not shown. If osd enable is high, the On-
Screen Display is shown. The osd color lookup table has to be initialized and
the osd has to be written before osd enable is raised. osd enable is 0 on
power-up or reset.

osd wr en is set whenever an osd write is has been accepted, whether the osd write was
successful or not. osd wr en is cleared whenever the status register is read.

osd wr ack is set whenever an osd write has been successful. osd wr ack is cleared
whenever the status register is read.

osd wr full is set when the osd write fifo is full. When the osd write fifo is full, osd
writes are not accepted.

When writing to the osd color lookup table:

1. Write osd clt yuvm.

2. Write osd clt addr.

Writes to the osd color lookup table take effect immediately.
When writing to the osd:

1. Only write to the osd when horizontal size and vertical size have meaningful
values. This is the case when a picture header has been encountered.

2. Verify osd wr full is low. Writing when osd wr full is high has no effect.

3. Write the leftmost four pixels to osd dta high.

4. Write the rightmost four pixels to osd dta low.

5. Write x and y position of the leftmost pixel to osd addr. Note x has to be a
multiple of 8. osd frame always has value 4 for OSD writes. osd comp always has
value 0 for OSD writes.

6. Read the status register until osd wr en is asserted. When osd wr en is high, the
value of osd wr ack indicates whether the write was successful.

Writes to the osd pass through a 32-position fifo. This introduces some latency. Repeating
the last osd write 32 times flushes fifo contents, ensuring osd memory has been updated.

18 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

osd frame Frame
0 0
1 1
2 2
3 3
4 OSD

Table 1.7: OSD Frame

osd comp Component
0 y
1 u
2 v

Table 1.8: OSD Component

1.7 Frame Store

Pixels can be written directly to the frame store, using the same mechanism as OSD
writes. By writing pixels to the frame store and afterwards setting the source select
field of the trick register (described on page 25) arbitrary bitmaps can be shown.

The only difference between an OSD write and a frame store write is the value of
osd frame and/or osd comp. Tables 1.7 and 1.8 list the frame and component codes.
Frames 0 and 1 are used for storing I and P frames. Frames 2 and 3 are used for storing
B frames. All frames are stored in 4:2:0 format, with u and v frames having half the
width and height of the y frame. Note y, u and v values are stored in memory with an
offset of 128.

Writes to the frame store are only defined when horizontal size and vertical size
have meaningful values. Writes with osd frame 4 are only defined when osd comp is 0.

1.8 Video Modeline

The video timing parameters are:

• horizontal resolution

• horizontal sync start

• horizontal sync end

• horizontal length

• vertical resolution

• vertical sync start

MPEG2 Decoder User Guide April 14, 2009 19

1. Processor Interface kdv electronics

horizontal_sync_end

horizontal_length

v
e
r
t
i
c
a
l
_
l
e
n
g
t
h

v
e
r
t
i
c
a
l
_
s
y
n
c
_
e
n
d

v
e
r
t
i
c
a
l
_
s
y
n
c
_
s
t
a
r
t

v
e
r
t
i
c
a
l
_
r
e
s
o
l
u
t
i
o
n

horizontal_resolution

horizontal_sync_start

progressive

Figure 1.2: Progressive Video

• vertical sync end

• vertical length

• horizontal halfline

• interlaced

• pixel repetition

These parameters can be deduced from the X11 modeline for the display, which is described
in the “XFree86 Video Timings HOWTO”. Writing to the internal registers which contain
the video timing parameters will restart the video synchronization generator.

Two video timing diagrams are shown, one for progressive video (Figure 1.2) and
one for interlaced video (Figure 1.3). The diagrams show the picture area (a light grey
rectangle), flanked by horizontal sync (a dark grey vertical bar) and vertical sync (a dark
grey horizontal bar).

horizontal resolution number of dots per scan line.

20 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

horizontal_sync_start

horizontal_resolution

horizontal_sync_end

horizontal_length

horizontal_halfline

v
e
r
t
i
c
a
l
_
l
e
n
g
t
h

v
e
r
t
i
c
a
l
_
s
y
n
c
_
e
n
d

v
e
r
t
i
c
a
l
_
s
y
n
c
_
s
t
a
r
t

v
e
r
t
i
c
a
l
_
r
e
s
o
l
u
t
i
o
n

odd field

even field

Figure 1.3: Interlaced Video

MPEG2 Decoder User Guide April 14, 2009 21

1. Processor Interface kdv electronics

horizontal sync start used to specify the horizontal position the horizontal sync pulse
begins. The leftmost pixel of a line has position zero.

horizontal sync end used to specify the horizontal position the horizontal sync pulse
ends.

horizontal length total length, in pixels, of one scan line.

vertical resolution number of visible lines per frame (progressive) or field (interlaced).

vertical sync start used to specify the line number within the frame (progressive) or
field (interlaced) the vertical sync pulse begins. The topmost line of a frame
or field is line number zero.

vertical sync end used to specify the line number within the frame (progressive) or
field (interlaced) the vertical sync pulse ends.

horizontal halfline used to specify the horizontal position the vertical sync begins
on odd fields of interlaced video. Not used in progressive mode.

vertical length total number of lines of a vertical frame (progressive) or field (inter-
laced).

clip display size If asserted, the image is clipped to (display horizontal size,
display vertical size). If not asserted, the image is clipped to
(horizontal size, vertical size).

interlaced used to specify interlaced output is required. If interlaced is asserted,
vertical sync is delayed one-half scan line at the end of odd fields.

pixel repetition If pixel repetition is asserted, each pixel is output twice. This can
be used if the original dot clock is too low for the transmitter. As an example,
suppose valid dot clock rates are 25. . . 165 MHz, but the SDTV video being
decoded has a dot clock of only 13.5 MHz. Asserting pixel repetition and
doubling dot clock frequency results in a dot clock of 27 MHz, sufficient for
SDTV video to be transmitted across the link.

1.9 Interrupts

Three independent conditions may trigger an interrupt: when a picture header is encoun-
tered in the bitstream, when frame display ends, and when video resolution or frame rate
changes. All three interrupt sources are optional and can be disabled individually.

When picture hdr intr en is high and a picture header is encountered in the bit-
stream, picture hdr is set and the interrupt signal is asserted until the status register is
read. If picture hdr intr en is low, the interrupt signal is never raised. picture hdr
and picture hdr intr en are 0 on power-up or reset. The picture header interrupt
marks the “heartbeat” of the video decoding engine.

22 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

When video vertical synchronization begins and frame end intr en is high, frame end
is set and the interrupt signal is asserted until the status register is read. If
frame end intr en is low, the interrupt signal is never raised. frame end and
frame end intr en are 0 on power-up or reset. The frame end interrupt marks the
“heartbeat” of the video display engine.

When one of horizontal size, vertical size, display horizontal size,
display vertical size, progressive sequence, aspect ratio information,
frame rate code, frame rate extension n, or frame rate extension d changes,
and video ch intr en is high, video ch is set and the interrupt signal is asserted until
the status register is read. If video ch intr en is low, the interrupt signal is never
raised. video ch and video ch intr en are 0 on power-up or reset. The video change
interrupt marks an abrupt change in the MPEG2 bitstream.

It is suggested that software, when receiving a video change interrupt:

1. Reads the size, display size and frame rate registers.

2. If frame rate code, frame rate extension d or frame rate extension n have
changed, change dot clock frequency.

3. Calculates a video modeline, either using a look-up table or algebraically, e.g. using
the VESA General Timing Formula.

4. Writes the new video modeline parameters to the horizontal, horizontal sync, vertical,
vertical sync and video mode registers. This restarts the video synchronization.

5. If horizontal size or vertical size have changed and osd enable is high,
rewrite the On-Screen Display.

1.10 Watchdog

The MPEG2 decoder contains a watchdog circuit. The watchdog circuit resets the
decoder if the decoder is unresponsive. The decoder is considered unresponsive if the
decoder does not accept MPEG2 data for a period of time longer than the watchdog
timeout interval. We outline how to configure the watchdog timeout interval, define
under which conditions the watchdog circuit activates, and describe what happens when
the watchdog timer expires.

The watchdog timeout interval can be configured by writing watchdog interval,
register 0, bits 15-8.

• writing 0 to watchdog interval causes the watchdog timer to expire immediately.

• writing a value from 1 to 254, inclusive, to watchdog interval enables the watchdog
circuit.

• writing 255 decimal to watchdog interval disables the watchdog circuit.

MPEG2 Decoder User Guide April 14, 2009 23

1. Processor Interface kdv electronics

The default value of watchdog interval is 127. If watchdog interval has a value from
1 to 254, inclusive, the watchdog timeout is

watchdog timeout = (watchdog interval + 1).(repeat frame + 1).218

clk clock cycles. repeat frame (Section 1.11) determines the numer of times a decoded
video frame is displayed. Each decoded video image is shown repeat frame + 1 times.
If a video frame is shown n times, the watchdog timeout is multiplied by n as well. This
implies there is no need to adjust the watchdog timer if video is reproduced in slow
motion.

The default value of repeat frame is 0. If decoder clk frequency is 75 MHz the default
watchdog timeout interval is 0.45 seconds.

The watchdog timer starts running when the decoder raises the busy signal. If the busy
signal remains high for longer than the watchdog timeout interval, a reset is generated.

The watchdog timer is reset

• when the global rst input signal is driven low

• when the decoder busy signal is low

• when the decoder has been halted to show the current frame (repeat frame is 31,
freeze-frame)

• when the decoder has been halted to show a particular framestore frame
(source select is non-zero)

• when the watchdog circuit has been disabled (watchdog interval has been set to
0 or to 255)

• during the first 226 clk clock cycles after the watchdog timer expired, or the
decoder was reset. This watchdog timer holdoff disables the watchdog during
system initialisation. If clock frequency is 75 MHz, 226 clock cycles corresponds to
0.89 seconds.

When the watchdog timer expires

• the watchdog rst output pin becomes low during one clk clock cycle. The
watchdog rst output can be used to reset external hardware, or to generate
a processor interrupt.

• the watchdog status bit in the status register is set to 1. Software can detect
whether the watchdog timer expired by checking watchdog status in the status
register. Reading the status register resets the watchdog status bit back to 0.

• The framestore, On-Screen Display and circular video buffer are filled with zeroes.

• any data in the memory response fifo is discarded.

24 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

• osd enable is set to 0. This disables the On-Screen Display, as the On-Screen
Display now contains all zeroes.

• configuration data written to the register file is not modified when the watchdog
expires. In particular, the video timing parameters (Sec. 1.8) remain unchanged.

The watchdog rst output pin can optionally be used to reset external hardware when
the watchdog expires. Examples of external hardware are the memory controller and the
DVI dot clock generator. Note, however, resetting memory controller and DVI dot clock
generator when the watchdog timer expires is optional.

The MPEG2 decoder does not require the external memory controller to be reset when
the watchdog timer expires. When the watchdog timer expires, the MPEG2 decoder will
write zeroes to all addresses from FRAME 0 Y to VBUF END (framestore request.v,
STATE CLEAR). When the watchdog timer expires, the MPEG2 decoder will also
read and discard any data from the memory response fifo (framestore response.v,
STATE FLUSH). These two actions re-synchronize MPEG2 decoder and external memory
controller and bring memory to a known state.

The MPEG2 decoder also does not require the DVI clock generator to be reset when
the watchdog expires. When the watchdog timer expires, the video timing parameters
(Sec. 1.8) remain unchanged. If the DVI clock frequency remains unchanged when the
watchdog timer expires, the decoder will continue with exactly the same video timing.

1.11 Trick mode

The trick mode register provides a toolbox for implementing non-standard playback
modes. An example of a non-standard playback mode is slow motion. It is perhaps
easiest to visualize trick mode settings as a pipeline (Figure 1.4).

flush vbuf Writing one to flush vbuf clears the incoming video buffer. Flushing the
video buffer may be useful when changing channels.

persistence If persistence is set, and no new decoded image is available at frame
start the last decoded image is shown again. If persistence is not set, and
no new decoded image is available at frame start a blank screen is shown.
persistence is 1 on power-up or reset.

source select If zero, normal video is shown. Non-zero values allow continuous output
of a blank screen, or a specific frame from the frame store, as in table 1.9.
source select is 0 on power-up or reset.

repeat frame If zero, each decoded image is shown once. If non-zero, contains the
number of times the decoded image will be additionally shown, as in table
1.10. A value of 31 shows the image indefinitely. repeat frame is 0 on
power-up or reset.

MPEG2 Decoder User Guide April 14, 2009 25

1. Processor Interface kdv electronics

video out

display

frame buffer

decoder

video buffer

MPEG2 in

source select

flush vbuf

repeat frame
deinterlace

persistence

Figure 1.4: Trick mode pipeline

source select Frame shown
0 last decoded frame
1 blank screen
4 frame 0
5 frame 1
6 frame 2
7 frame 3

Table 1.9: Source Select

repeat frame times shown
0 1
1 2
2 3

. . .
30 31
31 forever

Table 1.10: Repeat Frame

26 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 1. Processor Interface

deinterlace Setting deinterlace high forces the decoder to output video as frames,
even if the MPEG2 stream is interlaced. This can be used to reproduce
interlaced MPEG2 streams on progressive displays. Setting deinterlace
is not recommended when reproducing a progressive MPEG2 stream on a
progressive display. Setting deinterlace has no effect if the video modeline
specifies interlaced output (interlaced set). Note no spatial or temporal
interpolation is done (“weaving”).

1.12 Test point

The MPEG2 decoder provides a test point for connecting a logic analyzer. Internally,
the decoder contains various test points, only one of which is actually output to the logic
analyzer. Which internal test point is output to the logic analyzer is determined by the
contents of testpoint sel. The value of bits 0..31 of the test point can also be read by
software. While this is no substitute for a logic analyzer, it is recognized that in many
cases this may be the only option available.

testpoint sel Used in hardware debugging. Determines which internal test point is
multiplexed to the 34-channel logical analyzer test point.

testpoint Used in hardware debugging. Provides the current value of bits 0 to 31 of
the 34-channel logical analyzer test point.

MPEG2 Decoder User Guide April 14, 2009 27

2 Decoder Sources

Chapter 2 provides an overview of the decoder sources for the hardware engineer who
wishes to synthesize or modify the decoder.

2.1 Source Directory Structure

The source files are organized in directories as follows:
bench/ iverilog Icarus behavioral simulation, page 34

vsim-behavioral Modelsim behavioral simulation, page 39
vsim-timing Modelsim timing simulation, page 39
conformance MPEG2 conformance tests, page 41

doc/ Documentation
rtl/ mpeg2 MPEG2 decoder, page 28

ml505 Xilinx ML505 top-level module, page 41
dvi Chrontel ch7301c DVI, page 43
ethernet Xilinx SGMII ethernet, page 41
mem interface Xilinx DDR2 Memory Controller, page 43

synth/ Xilinx ISE synthesis, page 44
tools/ fsmgraph Finite state machine graphs, page 48

ieee1180 IEEE1180 IDCT accuracy test, page 49
logicport Logicport logic analyzer, page 48
mpeg2ether Decoder configuration tool, page 45
mpeg2decode Reference MPEG2 decoder, page 49
streams MPEG2 test streams, page 50
windows Microsoft Windows version of mpeg2ether tool

A unix/linux system with Xilinx ISE 9.2i, Icarus Verilog 0.8.6, and Modelsim is
suggested, but not required, as development environment.

2.2 MPEG2 Decoder

The rtl/mpeg2 directory contains the sources of the MPEG2 decoder itself. This
section describes the changes most likely to be needed when instantiating the decoder:
changing default modeline, changing FIFO sizes, choosing dual-ported ram and fifo
models, changing memory mapping. In addition, references are provided for the IDCT
and bilinear chroma upsampling algorithms.

28 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

2.2.1 FIFO sizes

Fifo depth and almost full/almost empty thresholds are defined in fifo size.v. Note
setting fifo depths and thresholds to arbitrary values can result in decoder deadlock.

Figure 2.1 shows MPEG2 decoder data flow. Together, framestore request, memory
controller and framestore response implement the framestore. Communication with the
framestore is through fifos. The incoming MPEG2 stream is written to vbuf write fifo.
framestore request reads the stream from vbuf write fifo and writes it to the circular
video buffer in memory. If vbuf read fifo is almost empty, framestore request issues
memory read requests for the circular video buffer. framestore response receives data
from the circular video buffer and writes the data to vbuf read fifo. The net result is
vbuf write fifo, circular video buffer and vbuf read fifo acting as a single, huge fifo.

Variable-length decoding reads the MPEG2 stream from vbuf read fifo, and produces
motion vectors and run/length codes. Run/length decoding, inverse quantizing, inverse
zig-zag and inverse discrete cosine transform (IDCT) read the run/length codes and
produce the prediction error. The prediction error is written to predict err fifo, one
row of eight pixels at a time.

Motion compensation address generation motcomp addrgen translates the motion
vectors into three sets of memory addresses: the addresses where the forward motion
compensation pixels can be read, the addresses where the backward motion compensation
pixels can be read, and the addresses where the reconstructed pixels can be written. The
addresses of the pixels needed for forward and backward motion compensation are written
to the fwd reader and bwd reader address fifos. The address of the reconstructed pixels
is written to the motion compensation destination fifo, dst fifo. The memory subsystem
reads the fwd reader and bwd reader address fifos, and writes the pixel values to the
fwd reader and bwd reader data fifos.

Motion compensation reconstruction motcomp recon adds pixel values read from
forward motion compensation data fifo, backward motion compensation data fifo and
prediction error, and writes the result to the address read from the motion compensation
destination fifo.

Displaying the video image requires chroma resampling and yuv to rgb conversion.
Resampling address generation resample addrgen scans the reconstructed video image,
line by line. The addresses of the pixels are written to the disp reader address fifo.
The memory subsystem reads the addresses from disp reader address fifo and writes
the pixel values to the disp reader data fifo. resample dta reads the pixel values from
the disp reader data fifo, while resample bilinear does the actual bilinear chroma
upsampling calculations. After conversion from yuv to rgb, the pixels are written to the
pixel queue pixel queue which adapts between decoder and DVI clocks.

Note the memory tag fifo mem tag fifo between framestore request and
framestore response. For every memory read request, framestore request writes
a tag to the memory tag fifo. The tag identifies the source of the memory read request:
circular video buffer, forward and backward motion compensation, or resampling. For
every data word received from memory, framestore response reads a tag from the
memory tag fifo, and writes the data word received from memory to the data fifo corre-

MPEG2 Decoder User Guide April 14, 2009 29

2. Decoder Sources kdv electronics

Figure 2.1: MPEG2 decoder dataflow

30 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

sponding to the tag. If the memory tag fifo is almost full, framestore request stops
issuing memory read or write requests. As a result, the number of outstanding memory
read requests is always less than or equal to the size of the memory tag fifo.

When modifying fifo size.v, care should be taken the fifos can never overflow. Note
that when framestore request stops issuing memory read requests, there still may
be outstanding memory read requests in the memory request queue. The number of
outstanding memory read requests is always smaller than, or equal to, the size of the
memory tag fifo. When modifying fifo size.v, remember fifos which receive data from
memory may receive outstanding data, even after framestore request has stopped
sending memory read requests.

2.2.2 Dual-ported memory and FIFO models

FPGAs typically provide dedicated on-chip fifo’s and dual-port RAMs. The designer
then has to choose between using vendor-provided FIFOs and dual-port RAMs or writing
his own.

The file wrappers.v defines the implementation of all dual-port RAMs and fifos in
the design. For each component, two versions are provided: one where read and write
port share a common clock; and one where read and write port have independent clocks.

dpram sc dual-ported ram, same clock for read and write ports

dpram dc dual-ported ram, different clock for read and write ports

fifo sc fifo, same clock for read and write ports

fifo dc fifo, different clock for read and write ports

The dual-ported rams are inferred from code in wrappers.v. The fifos can be either
implemented in Verilog, or instantiated as FPGA primitives, depending upon wrappers.v.
Following fifo models are available:

xfifo sc.v fifo, same clock for read and write port.

generic fifo sc b.v OpenCores generic fifo, different clock for read and write ports.

xilinx fifo sc.v Xilinx Virtex-5 fifo, same clock for read and write ports. Uses
xilinx fifo.v, xilinx fifo144.v and xilinx fifo216.v.

xilinx fifo dc.v Xilinx Virtex-5 fifo, different clock for read and write ports. Uses
xilinx fifo.v, xilinx fifo144.v and xilinx fifo216.v.

xilinx fifo sc.v and xilinx fifo dc.v implement fifos using FIFO18, FIFO18 36,
FIFO36 or FIFO36 72 Virtex-5 primitives. Table 2.1 lists available data and address
widths. If a xilinx fifo sc.v or a xilinx fifo dc.v is instantiated with data and/or
address widths different from those in Table 2.1, the actual fifo will be larger and/or
wider.

MPEG2 Decoder User Guide April 14, 2009 31

2. Decoder Sources kdv electronics

Data bits Address bits FIFO Depth Implementation
4 13 8192 FIFO36
4 12 4096 FIFO18
9 12 4096 FIFO36
9 11 2048 FIFO18
18 11 2048 FIFO36
18 10 1024 FIFO18
36 10 1024 FIFO36
36 9 512 FIFO18
72 9 512 FIFO36 72
144 9 512 2 * FIFO36 72
216 9 512 3 * FIFO36 72

Table 2.1: Xilinx FIFO address widths

2.2.3 Memory mapping

The MPEG2 decoder memory mapping is defined in rtl/mpeg2/mem codes.v. The
default memory mapping needs 4 mbyte RAM and is sufficient for SDTV. By defining
MP AT HL an alternative memory mapping can be chosen which requires 16 mbyte RAM
and is sufficient for HDTV.

Translation of macroblock addresses to memory addresses is implemented in
rtl/mpeg2/mem addr.v. A macroblock address, a signed motion vector (mv x, mv y)
with halfpixel precision, and an signed offset (delta x, delta y) with pixel precision are
translated to an address in memory.

The macroblock address is assumed to iterate over all allowable values: beginning at
zero, incrementing by one, until after the final macroblock the macroblock address is reset
to zero. Macroblock address has to be initialized to zero, or an error condition results.
Macroblock address changes other than incrementing by one, remaining unchanged or
resetting to zero also result in an error condition.

Note the motion vector (mv x, mv y) is scaled by a factor two when accessing chromi-
nance as defined in [1, par. 7.6.3.7]. The offset (delta x, delta y) remains unchanged
when accessing chrominance blocks.

The translation of macroblock addresses and motion vectors to memory addresses
in rtl/mpeg2/mem addr.v has to be kept synchronized with the framestore dump task
write framestore in rtl/sim/mem ctl.v, else the framestore dumps made during sim-
ulation will not accurately represent framestore contents.

Note out-of-range memory accesses are translated to the ADDR ERR address. If
a memory request with address mem req rd addr equal to ADDR ERR occurs during
simulation, simulation stops with an error message.

The MPEG2 decoder zeroes out the framestore after system reset or when the watchdog
timer expires. The MPEG2 decoder writes zeroes to all addresses from FRAME 0 Y to
VBUF END when the rst input pin goes low or when the watchdog rst pin goes low.

32 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

2.2.4 Modeline

The default modeline is 800x600 progressive @ 60 Hz (SVGA). The modeline.v source
contains the modeline parameters, and can be edited to change horizontal and vertical
resolution, sync pulse width and position. The default pixel frequency on the ML505 is
38.21 MHz, and is defined in dotclock synthesizer.v. Note dotclock synthesizer.v
synthesizes two frequencies, dotclock and dotclock90, equal in frequency but 90 degrees
phase shifted. The frequency synthesized is

fout = fosc.r.
DCM ADV INST.CLKFX MULTIPLY

DCM ADV INST.CLKFX DIV IDE

where fosc is the 100 MHz user clock frequency

fosc = 100

and
r =

PLL ADV INST.CLKFBOUT MULT

PLL ADV INST.CLKOUT1 DIV IDE
= 0.25

To change pixel frequency, first calculate the multiplier and divider for the new frequency.
Suppose one wishes to synthesize a frequency of 35 MHz:

macpro mpeg2ether # ./mpeg2ether --dot clock 35
dotclock ftarget = 35.00 fout = 35.00 MHz
multiplier: 7 divider: 5
high frequency mode: 0 ch7301 lowfreq: 1 ch7301 colorbars: 0

A pixel frequency of 35 MHz requires a multiplier of 7 and a divider of 5, with lowfreq
asserted. Hence, in dvi/dotclock.v:

parameter [7:0]
DEFAULT DIVIDER = 8’d4, // Divider minus one, actually
DEFAULT MULTIPLIER = 8’d6; // Multiplier minus one, actually

parameter
DEFAULT LOWFREQ = 1’b1

Note the modeline can be configured at any time using the mpeg2ether utility; it is
only when changing the default modeline that modifying the sources is necessary. The
mpeg2ether utility is explained on page 45.

2.2.5 Inverse Discrete Cosine Transform

The IDCT algorithm used is described in [4]. A copy of document [4] can be found
in the doc directory. The IDCT implementation uses 12 18x18 multipliers and two
dual-port rams, and can do streaming. Run-length decoding (rld.v), inverse quantizing
(iquant.v, zigzag table.v) and IDCT transform (idct.v) all operate at the same
speed of one pixel per clock. The IDCT meets the requirements of the former IEEE-1180.

MPEG2 Decoder User Guide April 14, 2009 33

2. Decoder Sources kdv electronics

Source Description
resample.v Upsampling top-level file
resample addrgen.v Generates memory addresses of chroma/lumi rows
resample dta.v Reads chroma/lumi rows from memory
resample bilinear.v Performs bilinear upsampling calculations

Table 2.2: Upsampling source files

2.2.6 Bilinear chroma upsampling

The chrominance components have half the vertical and half the horizontal resolution of
the luminance. To obtain equal chrominance and luminance resolution, bilinear chroma
upsampling is used. Bilinear chroma upsampling computes chroma pixel values by vertical
and horizontal interpolation. Vertical interpolation implies adding two rows of chroma
values with different weights. The chroma row closest to the luma row gets weight
3/4, while the chroma row farthest from the luma row gets weight 1/4. The document
doc/bilinear.pdf shows the weights used.

Bilinear chroma upsampling is implemented in various source files, as described in
Table 2.2.

2.3 Simulation

Three simulation environments are available for the MPEG2 decoder: behavioral simula-
tion using Icarus Verilog, behaviorial simulation using Modelsim, and timing simulation
using Xilinx ISE and Modelsim.

2.3.1 Icarus Verilog Simulation

Behavioral simulation of the decoder can be performed using Icarus Verilog. The Icarus
Verilog testbench in the bench/iverilog directory contains the following files:

testbench.v Top-level Verilog source; instantiates MPEG2 decoder.

mem ctl.v Simple memory controller, for simulation only.

Makefile Makefile to create and run the simulation.

wrappers.v Wrapper for dual-port ram and fifos. Implements synchronous fi-
fos using xfifo sc.v, and implements asynchronous fifos as OpenCores
generic fifo sc b.v.

generic dpram.v, generic fifo dc.v, generic fifo sc b.v Opencores generic fifos.

Create the decoder is easy using the accompanying Makefile. First, remove any files
left over from a previous simulation:

34 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ make clean
rm -f mpeg2 stream.dat testbench.lxt trace framestore *.ppm tv out *.ppm

Now create the decoder:

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ make
iverilog -D IVERILOG -DMODELINE SIF -I ../../rtl/mpeg2 -o mpeg2
testbench.v mem ctl.v wrappers.v generic fifo dc.v
generic fifo sc b.v generic dpram.v ../../rtl/mpeg2/mpeg2video.v
../../rtl/mpeg2/vbuf.v ../../rtl/mpeg2/getbits.v
xxd -c 1 ../../tools/streams/stream-susi.mpg |
cut -d\ -f 2 > stream.dat

This executes two commands:

• iverilog to compile the Verilog sources to an executable, mpeg2.

• xxd to convert the binary MPEG2 program stream file stream.mpg to an ASCII
file stream.dat, which the simulator can load.

When compiling the Verilog sources, two Verilog parameters are defined on the command
line: IVERILOG and MODELINE SIF. The first Verilog define, IVERILOG , is defined
only during simulation, and never during synthesis. It is used to enable several run-time
checks which only make sense in a simulation environment. The second Verilog define,
MODELINE SIF, chooses one of several pre-defined video output formats from modeline.v.

Finally, run the newly created executable mpeg2:

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ make test
IVERILOG DUMPER=lxt ./mpeg2
LXT info: dumpfile testbench.lxt opened for output.
$readmemh(stream.dat): Not enough words in the read file for
requested range.
testbench.mem ctl.write framestore dumping framestore to

framestore 000.ppm @ 0.02 ms
testbench.mem ctl.write framestore dumping framestore to

framestore 001.ppm @ 0.02 ms
testbench.mpeg2.motcomp macroblock address: 0
testbench.mpeg2.motcomp macroblock address: 1
testbench.mpeg2.motcomp macroblock address: 2
testbench.mpeg2.motcomp macroblock address: 3

During simulation, the environment variable IVERILOG DUMPER=lxt is set. This instructs
the simulator to produce a dumpfile in the more compact lxt format, instead of the
default vcd format.

By default, simulator output includes the macroblock address. This allows easy
monitoring of decoder progress.

MPEG2 Decoder User Guide April 14, 2009 35

2. Decoder Sources kdv electronics

Each Verilog source file contains a define DEBUG statement, which can be uncom-
mented or commented to switch trace output for that particular source file on or off.

During simulation, two kinds of graphics files are written: framestore dumps
framestore *.ppm and video captures tv out *.ppm. The framestore is where the
decoder stores already decoded images. These are Portable Pixmap graphics files in
ASCII format. Figure 2.2 shows a sample framestore dump.

The framestore consists of four frames and the on-screen display (OSD). The first two
frames contain I and P pictures, while the last two frames contain B-pictures. Each frame
consists of y (luminance), u and v (chrominance) information, with u and v having half
the horizontal and half the vertical resolution of y. In the framestore dump, uninitialized
memory is displayed in green. Looking at figure 2.2, one can see that the first three
frames of the framestore have already been written; the decoder is halfway through the
fourth frame. The On-Screen Display, at the bottom of the framestore dump, has not
been initialized yet.

During simulation, by default, the framestore is dumped whenever a new frame begins;
and every 200 macroblocks. As a framestore dump is a graphics file in ASCII format,
one can also look at the file using standard text file utilities. These are the first 12 lines
of a sample framestore dump:

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ head -12 framestore 0001.ppm
P3
mpeg2 framestore dump @ 11.81 ms
frame number 2
horizontal size 352
vertical size 288
display horizontal size 0
display vertical size 0
mb width 22
mb height 18
picture structure frame picture
chroma format 420
352 2618 255
255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255

The header of the framestore dump contains information about decoder status at the
moment of the dump.

Figure 2.3 shows video capture file tv out 0000.ppm.Horizontal sync is displayed as a
vertical black stripe, to the right of the image. Vertical sync is displayed as a horizontal
black stripe, below the image area. Blanking is displayed in a dark grey. The position of
picture, horizontal sync and vertical sync in figure 2.3 is as defined in figure 1.2. As with
the framestore dumps, one can look at tv out 0000.ppm using standard text utilities.

36 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

Figure 2.2: Framestore dump

MPEG2 Decoder User Guide April 14, 2009 37

2. Decoder Sources kdv electronics

Figure 2.3: Video output capture

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ head -10 tv out 0000.ppm
P3
picture 1 @ 10.73 ms
horizontal resolution 352 sync start 381 sync end 388 length 458
vertical resolution 288 sync start 295 sync end 298 length 315
interlaced 0 halfline 175
459 316 255
0 0 0
0 77 0
3 0 3
2 0 2

The header of the video capture file contains information about the video modeline at
the moment of video capture.

To end the simulation, go to the window where iverilog is running and type ctrl-c
finish. The simulator will finish writing trace and testbench.lxt files, and return
control to the command prompt.

The binary file testbench.lxt is a log of all wire and register changes which occurred
during simulation. testbench.lxt can be displayed using vcd viewers such as gtkwave.

koen@macpro ~/xilinx/mpeg2/bench/iverilog $ gtkwave testbench.lxt &

Once testbench.lxt file has been loaded in gtkwave, internal decoder wires and registers
can be displayed as waveforms.

38 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

2.3.2 Modelsim Behavioral Simulation

Behavioral simulation of the decoder can be performed using Modelsim. The testbench
in the bench/vsim-behavioral directory contains the following files:

testbench.v Top-level Verilog source; instantiates MPEG2 decoder.

mem ctl.v Simple memory controller, for simulation only.

Makefile Makefile to create and run the simulation.

glbl.v FPGA global reset. Needed to initialize the Xilinx Virtex-5 fifo primitives
upon startup.

The simulation uses the default rtl/mpeg2/wrappers.v , which implements synchronous
fifos using xfifo sc.v, and implements asynchronous fifos as Xilinx Virtex-5 fifos
xilinx fifo dc.v.

To run a Modelsim behavioral simulation, go to the bench/vsim-behavioral directory.
Verify Modelsim commands (vlib, vlog, vsim) are in the path. Start simulation using
make clean test:

koen@macpro ~/xilinx/mpeg2/bench/vsim-behavioral $ make clean test
rm -rf vsim
mkdir vsim
cd vsim && vlib work
cd vsim && vlog -work work -novopt -hazards
+incdir+../../../rtl/mpeg2 +define+MODELINE SIF=1

+define+SIMULATION ONLY=1 ../testbench.v ../mem ctl.v ../glbl.v
../../../rtl/mpeg2/mpeg2video.v

Simulation can be ended using ctrl-c quit. After simulation, the
bench/vsim-behavioral/vsim/ subdirectory will contain framestore dump
files framestore *.ppm, video capture files tv out *.ppm and a vcd dump file
testbench.vcd.

2.3.3 Modelsim Timing Simulation

Behavioral simulation simulates the Verilog sources. In contrast, timing simulation
simulates the synthesized Verilog sources. Timing simulation consists of three steps:

• The decoder sources are synthesized.

• A verilog model of the synthesized decoder is constructed. The model consists of
two files:

mpeg2video timesim.v A Verilog model of the FPGA as interconnected gate-level
primitives.

MPEG2 Decoder User Guide April 14, 2009 39

2. Decoder Sources kdv electronics

mpeg2video timesim.sdf A Standard Delay Format specification of the timing
delays in the FPGA.

• The simulator applies the timing delays to the gate-level Verilog description of the
FPGA, and exercises the model on a testbench.

The testbench in the bench/vsim-timing directory contains the following files:

testbench.v Top-level Verilog source; instantiates MPEG2 decoder.

mem ctl.v Simple memory controller, for simulation only.

Makefile Makefile to create and run the simulation.

mpeg2video.restore Backup of Xilinx ISE project to synthesize the MPEG2 decoder
core.

mpeg2video.ucf Xilinx ISE User Constraints File, defines clock timing.

The simulation uses the default rtl/mpeg2/wrappers.v , which implements synchronous
fifos using xfifo sc.v, and implements asynchronous fifos as Xilinx Virtex-5 fifos
xilinx fifo dc.v.

As the generated mpeg2video timesim.v already contains a global reset, there is no
need for a separate glbl.v .

A Makefile takes care of the mechanics of timing simulation. Before running the
simulation, verify Modelsim and Xilinx ISE are in the path. Timing Simulation is then
started using make clean test:

koen@macpro ~/xilinx/mpeg2/bench/vsim-timing $ make clean test
rm -rf ise vsim mpeg2video timesim.v mpeg2video timesim.sdf
mkdir ise
cp mpeg2video.restore ise/
cd ise && (echo ’source mpeg2video.restore;restore;
project set "Verilog Macros" "SIMULATION ONLY=1|MODELINE SIF=1";
project close’ | xtclsh)
WARNING: Could not find "mpeg2video.ise";
the project will not be backed up.
Recreating project "mpeg2video.ise".
Restoring device settings
Adding User files.
Adding the file "../../../rtl/mpeg2/fifo size.v" to the project.
Adding the file "../../../rtl/mpeg2/framestore.v" to the project.

Simulation can be ended using ctrl-c quit. After simulation, the
bench/vsim-timing/vsim/ subdirectory will contain framestore dump files
framestore *.ppm, video capture files tv out *.ppm and a vcd dump file
testbench.vcd.

Note testbench.v accesses internal registers of the synthesized decoder. It may be
necessary to modify testbench.v if synthesis assigns other names to these registers.

40 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

2.3.4 Conformance Tests

The bench/conformance directory contains a testbench for the ISO/IEC 13818-4 MPEG2
conformance tests. The testbench assumes the ISO/IEC 13818-4 conformance test
bitstreams are available on your system. The ISO/IEC 13818-4 MPEG2 Conformance
test bitstreams for Main Profile @ Main Level can be downloaded from the ISO web site
using the tools/streams/retrieve script.

Typing make clean test in the bench/conformance directory simulates all MP@ML
conformance test bitstreams. Table 2.3 summarizes test results.

When running the compatibility tests, note the decoder is not MPEG1-compatible, and
does not decode MPEG1 streams. The MPEG2 decoder decodes MPEG2 4:2:0 program
streams only.

2.4 Xilinx ML505 Implementation

The decoder has been implemented on the Xilinx ML505 hardware reference design using
an XC5VLX50T Virtex-5 FPGA. The ML505 implementation receives an MPEG2 stream
over TCP/IP on the ethernet interface, and outputs the decoded video through the DVI
interface. On-board DRAM is used as frame buffer. The implementation is pure Verilog;
no embedded microcontrollers are used.

After a brief description of source files specific to the ML505 platform, we outline how
to create the ML505 Xilinx ISE project and synthesize the Verilog sources. A Linux
command-line tool is provided to read and write decoder configuration registers, and
to send an MPEG2 stream to the decoder. Finally, the logic analyzer interface to the
decoder is discussed.

2.4.1 Ethernet Interface

The ethernet controller is the Xilinx ML505 SGMII design, using the Virtex-5 embedded
10/100/1000 ethernet MAC in SGMII mode. Ethernet controller sources are copyright
Xilinx, Inc.

The ethernet MAC address is hardcoded as 01:02:03:04:05:06. The ethernet backend,
mpeg2ether.v, is a state machine which accepts Internet Protocol (IP) packets, and,
depending upon packet content, writes or reads decoder configuration registers, or sends
packet contents to the decoder as MPEG2 elementary stream data.

The following services are provided:

• ICMP echo request: ping

• UDP port 16384: MPEG2 decoder register access

• TCP port 16385: decoding MPEG2 video packetized elementary stream (PES)

• TCP port 16386: decoding MPEG2 video elementary stream (ES)

MPEG2 Decoder User Guide April 14, 2009 41

2. Decoder Sources kdv electronics

Test bitstream Profile and level Remarks
tcela/tcela-16-matrices 11172-2 Fail (MPEG1 stream)
tcela/tcela-18-d-pict 11172-2 Fail (MPEG1 stream)
compcore/ccm1 11172-2 Fail (MPEG1 stream)
tcela/tcela-19-wide 11172-2 Fail (MPEG1 stream)
toshiba/toshiba DPall-0 SP@ML
nokia/nokia6 dual SP@ML
nokia/nokia6 dual60 SP@ML
nokia/nokia 7 SP@ML
tcela/tcela-14-bff-dp SP@ML
ibm/ibm-bw-v3 SP@ML
tcela/tcela-8-fp-dp SP@ML
tcela/tcela-9-fp-dp SP@ML
mei/MEI.stream16v2 SP@ML Fail (MPEG1 stream)
mei/MEI.stream16.long SP@ML Fail (MPEG1 stream)
ntr/ntr skipped v3 SP@ML
teracom/teracom vlc4 SP@ML
tcela/tcela-15-stuffing SP@ML
tcela/tcela-17-dots SP@ML
gi/gi4 MP@ML
gi/gi6 MP@ML
gi/gi from tape MP@ML
gi/gi7 MP@ML
gi/gi 9 MP@ML
ti/TI cl 2 MP@ML
tceh/tceh conf2 MP@ML
mei/mei.2conftest.4f MP@ML
mei/mei.2conftest.60f.new MP@ML
tek/Tek-5.2 MP@ML
tek/Tek-5-long MP@ML
tcela/tcela-6-slices MP@ML
tcela/tcela-7-slices MP@ML
sony/sony-ct1 MP@ML
sony/sony-ct2 MP@ML
sony/sony-ct3 MP@ML
sony/sony-ct4 MP@ML
att/att mismatch MP@ML
teracom/teracom vlc4 MP@ML
ccett/mcp10ccett MP@ML
lep/bits conf lep 11 MP@ML
hhi/hhi burst short MP@ML
hhi/hhi burst long MP@ML
tcela/tcela-10-killer MP@ML

Table 2.3: Conformance Test Suite

42 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

Only one TCP connection can be active at any given time. Any IP fragments received
are discarded. See ethernet/mpeg2ether.v for a more complete description of the
limitations of the IP stack.

A command-line program, mpeg2ether.c, is supplied which allows one to read or write
decoder registers. Use of mpeg2ether.c is explained on page 45.

2.4.2 Memory Controller

The memory controller is the Xilinx ML505 Memory Interface Generator Design. Memory
controller sources are copyright Xilinx, Inc. The memory clock is connected as described
in [6]. Set dip switch SW6 to 010 010 10 (= 200 MHz), connect a pair of SMA coaxes
from J12/13 to J10/11, and install jumper J54.

The original ML505 MIG design contains sources for the Micron MT4HTF3264HY-53E
SODIMM. Recent boards are shipped with the Micron MT4HTF3264HY-667 SODIMM,
and memory parameters have been modified for this ram. If your ML505 board uses the
original Micron MT4HTF3264HY-53E SODIMM, you should roll back these changes by
substituting mem interface top.v.ORIG for mem interface top.v.

The Xilinx ML505 Memory Controller, as implemented here, does 64-bit wide reads
and writes in bursts of 4. The address space implemented by the Xilinx memory controller
is non-contiguous; in particular bit 10 of the address is discarded.

The MPEG2 decoder, on the other hand, requires 4 mbyte of 64-bit wide contiguous
address space for MP@ML, with single-word reads and writes.

A frontend, ml505/mem ctl.v, interfaces between the Xilinx ML505 memory controller
and the decoder.

Memory is clocked at 200 MHz. Note GPIO LED 0 (green) is lit when the memory
controller has been initialized.

2.4.3 DVI Video Output

The ML505 board implements a DVI video output using the Chrontel ch6301c transmitter.
The DVI video output consists of three main modules: a dot clock generator, dotclock.v,
a controller for the ch7301c, ch7301c.v, and a module feeding RGB values to the ch7301c,
dvi mux.v.

The dot clock is generated from a 100 MHz oscillator using a DCM (Digital Clock
Manager) feeding a PLL (Phase Locked Loop). The multiplier and divider of the DCM are
run-time configurable between 2 and 32 by writing to decoder register 14. PLL multiplier
and divider are fixed at 4 and 16, respectively. The resulting dot clock is variable between
25 and 90 MHz. Source files are dotclock.v and dotclock synthesizer.v. The dot
clock can be configured using the mpeg2ether tool.

Note the decoder produces at most one pixel per decoder clock, while the video output
may consume one pixel per DVI output clock. If pixels are consumed faster than they
are produced, the pixel queue (pixel queue.v) will run out of pixels, and the mixer
(mixer.v) will output black pixels, resulting in image tearing. Figure 2.4 shows an
example of image tearing; the mixer repeatedly acquires and loses lock. As the ML505

MPEG2 Decoder User Guide April 14, 2009 43

2. Decoder Sources kdv electronics

Figure 2.4: Image distortion when dot clock too high

decoder runs at 75 MHz, dot clock frequencies above 75 MHz make little sense on the
ML505.

The ch7301c is configured at start-up as RGB passthrough in dvi/ch7301c.v. The
i2c controller used for communicating with the ch7301c is from the OpenCores project,
http://www.opencores.org. The OpenCores i2c controller is implemented as three files,
i2c master byte ctrl.v, i2c master bit ctrl.v and i2c master defines.v. The
ch7301c has two control signals, colorbars and lowfreq, which can be set by writing
to decoder register 14. If the lowfreq signal is asserted, the ch7301 is configured for
pixel clocks of 65 MHz and lower. If the colorbars signal is asserted, the ch7301 is
configured to output a color bar test pattern. The mpeg2ether/colorbars tool provides
a command-line interface to set the color bar test pattern.

RGB data, horizontal and vertical synchronization and blanking from the MPEG2
decoder are sent to the ch7301c in dvi mux.v. The 24-bit RGB data is sent using 12
output pins at dual data rate (DDR).

Note GPIO LED 1 (green) is lit when the DCM is locked.

2.4.4 Fan Controller

The Xilinx ML505 board contains an ADT7476A fan controller. The firmware initializes
the fan to a fixed, low (20%) duty cycle. See ml505/adt7476a.v for implementation.

2.4.5 Xilinx ISE Synthesis

The MPEG2 decoder running on the Xilinx ML505 board can be synthesized using Xilinx
ISE 9.2i.

The synth directory contains the following files:

Makefile Makefile to create the ML505 bitstream.

44 April 14, 2009 MPEG2 Decoder User Guide

http://www.opencores.org

kdv electronics 2. Decoder Sources

ml505.restore Backup of Xilinx ISE project to synthesize the ML505 MPEG2 decoder.

The ML505 MPEG2 decoder uses the default rtl/mpeg2/wrappers.v , which implements
all synchronous fifos using xfifo sc.v. The ML505 design contains three asynchronous
fifos: memory request fifo and memory response fifo between decoder and memory
controller, and pixel queue between decoder and video output. These three asynchronous
fifos are implemented using xilinx fifo dc.v.

A Makefile is provided to create the FPGA bitstream. Before running make the Xilinx
tools have to be put in the path using the settings.sh script.

koen@macpro ~/xilinx/mpeg2/synth $. /opt/Xilinx92i/settings.sh
koen@macpro ~/xilinx/mpeg2/synth $ make clean
rm -rf ml505.bit ise
koen@macpro ~/xilinx/mpeg2/synth $ make
mkdir ise
cp ml505.restore ise/
cd ise && (echo "source ml505.restore;restore;project close" | xtclsh)
WARNING: Could not find "ml505.ise"; the project will not be backed up.
Recreating project "ml505.ise".
Restoring device settings
Adding User files.
Adding the file "../../rtl/dvi/ch7301c.v" to the project.
Adding the file "../../rtl/dvi/dotclock.v" to the project.
Adding the file "../../rtl/dvi/dotclock synthesizer.v" to the project.

Running make produces the FPGA bitstream file ml505.bit. Synthesis takes about 74
minutes on a 2.66 GHz dual Xeon with sufficient memory.

2.5 Tools

The tools directory contains various utilities and tools used during decoder development
and test.

2.5.1 mpeg2ether Utility

The mpeg2ether program is provided to configure the ML505 MPEG2 decoder.
When running the MPEG2 decoder on the ML505 board, verify GPIO LED 0 (green)

is lit, indicating the memory controller has initialized. If GPIO LED 0 is not lit, verify
DRAM SODIMM is an Micron MT4HTF3264HY-667. Verify GPIO LED 1 (green) is lit,
indicating dot clock lock.

To build the mpeg2ether tool, go to the tools/mpeg2ether directory, and type make.

koen@macpro ~/xilinx/mpeg2/tools/mpeg2ether $ make
gcc -o mpeg2ether -g mpeg2ether.c

MPEG2 Decoder User Guide April 14, 2009 45

2. Decoder Sources kdv electronics

Connect the ML505 board to the ethernet. Obtain a free LAN IP address and assign it
to the ML505 by setting up a static ARP entry. On Linux systems this requires root
access.

macpro ~ # /sbin/arp -s 192.168.153.9 01:02:03:04:05:06

Replace 192.168.153.9 with the LAN IP address assigned to the ML505. Windows users
can set a static ARP entry from the DOS prompt:

C:\>arp -s 192.168.153.9 01-02-03-04-05-06

Once ARP has been configured, check reachability using ping:

koen@macpro ~ $ ping -c 5 192.168.153.9
PING 192.168.153.9 (192.168.153.9) 56(84) bytes of data.
8 bytes from 192.168.153.9: icmp seq=1 ttl=64 (truncated)

Using the mpeg2ether utility, it is possible to read or write MPEG2 decoder registers.
Decoder register access uses UDP port 16384.

koen@macpro ~ $ mpeg2ether --hostname 192.168.153.9 --read 2
Using address 192.168.153.9
Received packet, cmd: 0x83 (read ack), reg: 02 dta: 00000000
horizontal size: 0
vertical size: 0

Connect a TV or monitor to the ML505 DVI output. To configure a working modeline,
keep in mind that displaying interlaced video on a progressive display requires setting
deinterlace to 1 (Section 1.11). The default modeline is 800x600 progressive at 60 Hz
refresh (SVGA). The default modeline is selected in modeline.v.

The modeline can be changed using the mpeg2ether utility:

mpeg2ether --hostname 192.168.153.9 --verbose 0
--hor resolution 799 --hor length 1055
--hor sync start 839 --hor sync end 967
--ver resolution 599 --ver length 627
--ver sync start 600 --ver sync end 604
--hor halfline 528 --pixel repeat 0 --interlaced 0 --repeat frame 0
--persistence 1 --clip display 0 --dot clock 40.0 --source select 0
--color bars 0

If a known good modeline for the display is available - for instance, obtained by connecting
the display to a PC - this modeline can be used as a starting point. Bear in mind, however,
subtle differences may exist between platforms. In particular:

46 April 14, 2009 MPEG2 Decoder User Guide

kdv electronics 2. Decoder Sources

• When defining horizontal sync pulse position, the decoder counts the leftmost pixel
as pixel 0, not pixel 1.

• When defining vertical sync pulse position, the decoder counts the topmost line as
line 0, not line 1.

• When defining vertical resolution of interlaced pictures, the decoder uses the number
of lines per field, not per frame.

Once a working modeline has been configured, video can be sent to the decoder. The
decoder accepts MPEG2 video elementary streams (ES) at TCP port 16386. The netcat
utility is used to stream the video file:

nc 192.168.153.9 16386 < ../streams/stream-susi.mpg

MPEG2 video packetized elementary streams (PES) can be streamed to TCP port 16385.
Note PES streams should only contain a single video ES.

If MPEG2 variable-length decoding of the program stream results in an error, Error
LED 1 (red) will be lit.

The ML505 IP implementation assumes the PC sending video and the MPEG2 decoder
are located on a dedicated or very lightly loaded ethernet. Basic networking features
such exponential backoff have not been implemented.

The ML505 IP protocol stack is strictly intended for testbench use only. Do not connect
to production networks. Do not use on a WAN (Wide-Area Network).

Note MPEG2 transport streams and MPEG1 program streams are not valid input
streams. The decoder only decodes MPEG2 elementary video streams. An MPEG2
transport stream needs to be demultiplexed (demuxed) before playback. The replex
utility in the tools/mpeg2ether directory can be used to demultiplex transport streams.
Assume 001.vdr is an MPEG2 transport stream, e.g. as produced by a digital video
recorder:

$ replex --input stream TS --of stream --demux 001.vdr

The output file stream.mv2 is an MPEG2 video elementary stream, and can be sent to
the decoder using the netcat utility. The source of the replex utility can be found in
the tools/mpeg2ether directory.

The OSD (on-screen display) can be set using the --osd disable, --osd enable,
--osd clt and --osd bitmap options. osd enable and osd disable switch the OSD on
and off. osd clt loads the OSD color lookup table from file, while osd bitmap loads the
osd bitmap from file. The shell script osddemo displays a sample OSD.

The mpeg2ether -h command lists all available options to mpeg2ether. Of interest
are:

--source select display framebuffer frame

--repeat frame slow motion

--testpoint sel selects testpoint if GPIO DIP switch 3 is off

MPEG2 Decoder User Guide April 14, 2009 47

2. Decoder Sources kdv electronics

2.5.2 Logic Analyzer

On the Xilinx ML505, the MPEG2 decoder testpoint has been broken out to the Xilinx
Generic Interface (XGI) . The test point selection can be done using the GPIO DIP
switches. If the ML505 is held so the LCD can be read, the GPIO DIP switches are at
the bottom right of the board. GPIO DIP switches are numbered 1 to 8, from left to
right.

If GPIO DIP switch 3 is off, test point selection is made by writing to register 15
decimal, REG WR TESTPOINT. If GPIO DIP switch 3 is on, test point selection is
made by dip switches 5 to 8. GPIO DIP switch 5 is MSB, GPIO DIP switch 8 is LSB.

Verify the probing has been enabled in probe.v. Note that, as one adds test points,
routing and timing closure becomes more and more difficult. Only define those test
points you need.

The Intronix Logicport is a small USB-based logic analyzer. It has 34 channels, two
of which can be used as clock inputs, and does state analysis at up to 200 MHz. The
MPEG2 decoder on the ML505 runs at 75 MHz, with a typical dot clock of 27 MHz, well
within the capabilities of the Logicport logic analyzer. Probing the memory controller
at 200 MHz, however, is borderline. To be on the safe side, when probing the memory
controller with the Logicport, lower memory clock to 125 MHz .

A small two-layer adapter board has been designed to connect the Intronix Logicport to
the Xilinx ML505. Board layout can be downloaded from http://www.kdvelectronics.
eu/probe_adapter/probe_adapter.html.

The tools/logicport directory contains Logicport configuration files for the test
points defined in probe.v. Note configuration files can be read and waveforms displayed
by Logicport software even if no analyzer is present.

2.5.3 Finite State Machine Graphs

The MPEG2 decoder uses Finite State Machines throughout; no embedded processors
or microcontrollers are used. Verifying the correctness of the Finite State Machines is
important. Finite state machine transition graphs are created from Verilog source files as
a means of visually inspecting and verifying source correctness. The mkfsmgraph Perl
script in tools/fsmgraph assumes the comment /* next state logic */ marks the
beginning of a case statement in an always block, used to select the next state, and
that all states begin with STATE :

/* next state logic */
always @*
case (state)
STATE INIT: if (first pixel read) next = STATE WAIT;

else next = STATE INIT;
...
default next = STATE INIT

endcase
/* state */

48 April 14, 2009 MPEG2 Decoder User Guide

http://www.kdvelectronics.eu/probe_adapter/probe_adapter.html
http://www.kdvelectronics.eu/probe_adapter/probe_adapter.html

kdv electronics 2. Decoder Sources

always @(posedge clk)
if(~rst) state <= STATE INIT;
else state <= next;

The mkfsmgraph tool parses the Verilog source files using the following algorithm:

• read the Verilog file until the comment /* next state logic */ is found

• take the first always block after the /* next state logic */ comment

• any word beginning with STATE is assumed to represent a FSM state.

• if the character following the FSM state is a colon (:) the state is a graph node.

• if the character following the FSM state is a semicolon (;) the state is the end point
of a state transition.

• if the character following the FSM state is neither a colon (:) nor a semicolon (;)
the state is not added to the graph.

The resulting graph is written to standard output in gml format. Graph layout software
uDrawGraph from the University of Bremen, Germany, is then used to produce a visually
appealing graph.

No attempt has been made to write a script capable of parsing arbitrary Verilog sources.
The Verilog sources have been written so the script can parse them.

The graph of the variable length-decoding FSM vld.v has been simplified further
by removing all transitions to STATE NEXT START CODE and STATE ERROR.
Nodes which transition to STATE NEXT START CODE are drawn with double border.
Removing transitions to STATE NEXT START CODE and STATE ERROR produces a
graph with much less visual clutter. A large format version of the FMS graph of vld.v
can be found in doc/vld-poster.pdf. It is suggested to become familiar with the graph
before significantly modifying vld.v.

2.5.4 IEEE-1180 IDCT Accuracy Test

idct.v has been tested to comply with the former IEEE-1180, the actual ISO/IEC 23002-
1 [2]. The testbench can be found in the tools/ieee1180 directory. Test results can be
found in the file ieee-1180-results. Test results indicate the idct implementation is
IEEE-1180 compliant.

2.5.5 Reference software decoder

The directory tools/mpeg2dec contains the MPEG2 reference decoder, modified to
provide extensive logging and to regularly write the framebuffers to file. A sample run
could be:

MPEG2 Decoder User Guide April 14, 2009 49

2. Decoder Sources kdv electronics

koen@macpro ~/xilinx/mpeg2/tools $ mkdir run
koen@macpro ~/xilinx/mpeg2/tools $ cd run
koen@macpro ~/xilinx/mpeg2/tools/run $../mpeg2dec/mpeg2decode
-r -v9 -t -o0 ’dump %d out %c’ -b ../streams/tcela-17.mpg > log
saving dump 0 out f.y.ppm
saving dump 0 out f.u.ppm
saving dump 0 out f.v.ppm
saving dump 0 forward ref frm.y.ppm
saving dump 0 forward ref frm.u.ppm
saving dump 0 forward ref frm.v.ppm
saving dump 0 backward ref frm.y.ppm
saving dump 0 backward ref frm.u.ppm
saving dump 0 backward ref frm.v.ppm
saving dump 0 auxframe.y.ppm
saving dump 0 auxframe.u.ppm
saving dump 0 auxframe.v.ppm
saving dump 1 out f.y.ppm
saving dump 1 out f.u.ppm
...

The log file contains detailed information about the execution of the MPEG2 decoding
algorithm, while the .ppm files contain framestore dumps, using separate graphics files
for each y, u and v component.

2.5.6 MPEG2 Test Streams

The tools/streams directory contains some sample MPEG2 program streams, useful
during testing. The retrieve script in the tools/streams directory can be used to
download the ISO/IEC 13818-4 conformance test bitstreams from the ISO web site1.

1ISO/IEC 13818-4 test bitstreams, http://standards.iso.org/ittf/PubliclyAvailableStandards/
ISO_IEC_13818-4_2004_Conformance_Testing/Video/bitstreams/main-profile/

50 April 14, 2009 MPEG2 Decoder User Guide

http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/bitstreams/main-profile/
http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/bitstreams/main-profile/

Bibliography

[1] ITU-T Recommendation H.262 “Information technology - Generic coding of moving
pictures and associated audio information: Video”, 2000. Also published as ISO/IEC
International Standard 13818-2.

[2] ISO/IEC International Standard 23002-1 “Information technology - MPEG video
technologies - Part 1: Accuracy requirements for implementation of integer-output
8x8 inverse discrete cosine transform”, 2006.

[3] “Architecture and Bus-Arbitration Schemes for MPEG-2 Video Decoder”, Jui-Hua
Li and Nam Ling, IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 9, No. 5, August 1999, p.727-736.

[4] “Systematic approach of Fixed Point 8x8 IDCT and DCT Design and Implementation”,
Ci-Xun Zhang , Jing Wang , Lu Yu, Institute of Information and Communication
Engineering, Zhejiang University, Hangzhou, China, 310027.

[5] “Virtex-5 FPGA User Guide”, Xilinx UG190 (v3.2), December 11, 2007.

[6] “ML505/506 MIG Design Creation Using ISE 9.2i SP3, MIG 2.0 and ChipScope Pro
9.2i”, Xilinx, December 2007.

MPEG2 Decoder User Guide April 14, 2009 51

	Processor Interface
	Decoder Block Diagram
	Ports
	Clocks
	Reset
	Stream Input
	Register File Access
	Memory Controller
	Memory Request FIFO
	Memory Response FIFO
	Video Output
	Test Point
	Status

	Processor Tasks
	Registers
	Read-only Registers
	On-Screen Display
	Frame Store
	Video Modeline
	Interrupts
	Watchdog
	Trick mode
	Test point

	Decoder Sources
	Source Directory Structure
	MPEG2 Decoder
	FIFO sizes
	Dual-ported memory and FIFO models
	Memory mapping
	Modeline
	Inverse Discrete Cosine Transform
	Bilinear chroma upsampling

	Simulation
	Icarus Verilog Simulation
	Modelsim Behavioral Simulation
	Modelsim Timing Simulation
	Conformance Tests

	Xilinx ML505 Implementation
	Ethernet Interface
	Memory Controller
	DVI Video Output
	Fan Controller
	Xilinx ISE Synthesis

	Tools
	mpeg2ether Utility
	Logic Analyzer
	Finite State Machine Graphs
	IEEE-1180 IDCT Accuracy Test
	Reference software decoder
	MPEG2 Test Streams

