
Systematic Approach of Fixed Point 8x8 IDCT and DCT
Design and Implementation1

Ci-Xun Zhang, Jing Wang, Lu Yu

Institute of Information and Communication Engineering,
Zhejiang University,

Hangzhou, China, 310027

Abstract. MPEG has recently issued a CFP for
voluntary fixed point 8x8 IDCT and DCT standards to
ease the effort that is needed to implement the IDCT and
DCT, and also to help ensure that decoders are
implemented in conformance with the MPEG standard.
This paper is conclusion and extension of our previous
proposal responding to the CFP. A systematic approach
of fixed point 8x8 IDCT and DCT design and
implementation is proposed that approximate the ideal
integer output IDCT and DCT with high fidelity.
Performance and complexity issues such as bit width are
discussed for different methods using this approach. The
methods discussed in this paper can also be easily
extended to IDCT and DCT with other size.
Index Terms—DCT, IDCT, MPEG, standard

1. INTRODUCTION
Recently, MPEG has issued a CFP for voluntary

fixed point 8x8 IDCT and DCT standards to ease the
effort that is needed to implement the IDCT and DCT,
and also to help ensure that decoders are implemented in
conformance with the MPEG standard [1]. The proposed
IDCT should satisfy all the accuracy requirements
specified in [2] [3]. This paper is conclusion and
extension of our previous proposal responding to this
CFP [4]. In this paper, we propose a systematic approach
of fixed point 8x8 IDCT and DCT design and
implementation that approximate the ideal integer output
IDCT and DCT with high fidelity. The paper is organized
as follows. In section 2, a detailed description about the
design and implementation of the proposed algorithm is
presented. Performance and complexity issues such as bit
width are also discussed for different methods using this
approach. Section 3 concludes the paper.

2. ALGORITHM DESIGN AND
IMPLEMENTATION
2.1 Algorithm Design

The basic idea is to apply an exact mathematical
equivalent to the following separable process: (For
simplicity, we focus our discussion on IDCT and
similar design approach can be applied for DCT.)

1. Matrix multiply by the fixed point IDCT

 1 This research is sponsored by NSFC under contract No.
60333020 and 90207005.

matrix IDCTfp which is produced by multiplying the
ideal IDCT matrix by sqrt(8)*2SCALE and rounding the
resulting values to the nearest integer as given by (1).

(8 2)SCALE

G A E B G C F D
G B F D G A E C
G C F A G D E B
G D E C G B F A

round
G D E C G B F A
G C F A G D E B
G B F D G A E C
G A E B G C F D

⎡ ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− − − −⎢ ⎥= = ⎢ ⎥− − − −
⎢ ⎥

− − − − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

fpIDCT IDCTi i

(1).

2. Right shift by ROW_SHIFT bits (with

rounding) after 1-D transform and COL_SHIFT bits
after 2-D transform (also with rounding). The process
can be either row-first ordering or column-first
ordering. Without losing generality, we use row-first
ordering here, and the process can be represented by
(2) and (3) below:

(

(1 (_ 1))) _ROW SHIFT ROW SHIFT

=

+ << − >>
output_1d input fpIDCT IDCT IDCTi , (2)

(

(1 (_ 1))) _COL SHIFT COL SHIFT

=

+ << − >>
output_2d fp output_1dIDCT IDCT IDCTi . (3)

3. Clip the 2-D transform output to the

pre-defined IDCT output range. For
SAMPLE_BITS-bit video sample data, this can be
represented by (4):

_ _3(2 , 2 1,)SAMPLE BITS SAMPLE BITSClip= − −
output

output_2d

IDCT

IDCT
, (4)

where:

;

3(, ,) ;
;

x z x
Clip x y z y z y

z otherwise

<⎧
⎪= >⎨
⎪
⎩

. (5)

Let INPUT_BITS denote the bit width of the

IDCT input data and OUTPUT_BITS denote the bit
width of the IDCT output data. INPUT_BITS and
OUTPUT_BITS are given by (6) and (7) respectively
[1]:

 _ _ 4INPUT BITS SAMPLE BITS= + , (6)

_ _ 1OUTPUT BITS SAMPLE BITS= + . (7)

The relationship of INPUT_BITS and

OUTPUT_BITS is given by (8):

 _ 2 _ _
_

INPUT BITS SCALE ROW SHIFT COL SHIFT
OUTPUT BITS

+ − −
=

i . (8)

Combining (6), (7), (8) we can get:

2

_ _ 3
SCALE
ROW SHIFT COL SHIFT= + −
i

, (9)

and thus:

 1 2SCALE n or SCALE n n= = + ∈Z . (10)

In this paper, we only consider the methods with

positive SCALEs. Similar methods with practically
negative SCALEs (but not rounded to nearest integers)
are discussed in [7].

Note here that conceptually different SCALEs
can be used for column and row transform. However,
the above derivation is based on using same SCALE
for both column and row transform. Such an
arrangement is of significant importance for
DCT/IDCT chip designs, since only one single
butterfly structure implementation is needed.

Bit width is a major issue in the design of the
IDCT especially in hardware implementation, and
serves as an important complexity consideration when
choosing a specific IDCT design. Assuming the IDCT
input is the theoretical DCT output (without
quantization/dequantization or possible error, etc), a
good estimation of the bit-widths is as follows:

The bit width of theoretical 1-D IDCT output
value is:

 1_

_ _ 5
DOUTPUT BITS

SCALE ROW SHIFT SAMPLE BITS= − + +⎡ ⎤⎢ ⎥
. (11)

The bit width of theoretical 2-D IDCT output

value is:
 .

2_ _ 3DOUTPUT BITS SAMPLE BITS= + . (12)

The bit width of theoretical maximum bit width

of intermediate value during the transform process is:

 _ _
_ _ 3

MAX INTER BITS
COL SHIFT SAMPLE BITS= + +

. (13)

From (11), (12), (13) we can see that the bit

widths are mainly determined by the parameters
SCALE, ROW_SHIFT, and COL_SHIFT. (there are
actually only two free variables among three.) The
method described above is denoted as (SCALE,
ROW_SHIFT, COL_SHIFT) in this paper.

2.2 Implementation Schemes

Among all possible methods that meet all the
accuracy requirements, the method (13,11,18) is
proposed because it is accurate, fast and cost effective.
It is similar to the method adopted by the Independent
JPEG Group in its popular JPEG implementation but
better and more elegant [4] and has lower
implementation complexity than that in [5]. Not like
many multiplier-less methods [13]-[19], it can be
implemented in many different ways that are
mathematically equal in output value. In the following,
four different implementation schemes are studied and
compared.

Scheme 1: The proposed method can be
implemented using the butterfly structure in [6] with
12 multiplications and 32 additions. However, from
(10), we can see that SCALE can be non-integer, so
we use 14 multiplications in Figure 1 to also take
these cases into consideration. The two multipliers in
the upper two paths of the butterfly structure can be
replaced by two shifters when SCALE is an integer.
The advantage of this structure is that all the
multiplications in each of the two separable stages of
the transform can be implemented in parallel with
each other. Note that the apparent rounding offset
used before the right shift in every 1-D transform can
be implemented by just adding a constant to the DC
term near the beginning of the process.

For a fixed point IDCT matrix derived by (1), the
parameters in the butterfly structure in Figure 1 can be
obtained by (14) and assured to be solvable and
unique. This is mainly due to the fact that there is at
most one multiplication in every path inside the
butterfly structure. Theoretical analysis shows that for
8-bit video sample data, only 16bit signed by signed
multiplications is needed to implement the method
(13,11,18).

0

1

2

0

1

2

3

4

5

6

7

8

e E F
e F
e E F
d A B C D
d A B C D
d A B C D
d A B C D
d B D
d A B
d B C
d B C
d B

= − −
=
= −
= − + + −
= + − +
= + + −
= + − −
= − +
= − −
= − −
= − +
=

 (14)

Scheme 2: The butterfly structure of scheme 1 is
also used here. However, in scheme 2, we replace the
multipliers in the butterfly structure with
VLSI-friendly coefficients using shifters and adders.
There are many methods of decomposing constant
integer multipliers into representation of shifters and
adders. One common method is by using Canonic
Signed Digit (CSD) representation which requires
33% fewer nonzero digits than binary [8] [9]. Optimal
methods based on the graph representation of the
multipliers are described in [10] [11] but parallel
implementation may be harmed.

The total number of adders of different methods
with SCALE from 10.5 (We note that SCALE as
small as 10.5 may suffice to achieve all precision
requirements. It is shown in [5] that the smallest
SCALE is 11 because non-integer SCALE is not
considered there.) up to 16 are also calculated and
given in Table 1. Some examples can be seen in [20].
It is expected that when SCALE is not an integer,
comparatively more shifters and adders are needed.
The methods with SCALE equal to 13 seem to be
most cost effective ones (Detailed accuracy and bit
widths of methods with different SCALE values can
be seen in [20].) and even need fewer adders than
methods with SCALE equal to 12 in the optimal
sense.

Table 1. Number of adders with SCALE values from
10.5 up to 16

 CSD Optimal
SCALE=10.5 82 73
SCALE=11 75 70
SCALE=11.5 88 78
SCALE=12 78 73
SCALE=12.5 95 83
SCALE=13 81 72
SCALE=13.5 98 84
SCALE=14 87 77
SCALE=14.5 100 85
SCALE=15 94 81
SCALE=15.5 109 90
SCALE=16 99 82

Scheme 3: On PCs with MMX/SSE/SSE2/SSE3

or other platforms with SIMD instruction,
implementations using matrix multiplication can be
even faster than butterfly-structure implementations
though there are more operations. In scheme 3, we use
the "chain matrix multiplication" scheme presented in
[12], where it is originally used to do efficient 4x4
matrix multiplication. Here we adapt it to 8x8 matrix
multiplication as follows. The row transform is first
calculated (Figure 2), and then the column transform
(Figure 3). One major problem when using SIMD

instruction is that it is costly to load column vector of
a matrix into an SIMD register. This scheme
effectively avoids this problem by pre-arranging the
input data and introducing a structure which assures
that the intermediate results stored in the resulting
register are just in the right order for the next step of
matrix multiplication, thus no shifting or abundant
loading operations are needed.

Scheme 4: In scheme 4, we use the well known
hybrid structure based on (16) and (17). By using this
scheme, we expect to have both advantages of matrix
multiplication and butterfly structure.

0 0 1
1 2 3
2 4 5
3 6 7

X G E G F Y A B C D Y
X G F G E Y B D A C Y
X G F G E Y C A D B Y
X G E G F Y D C B A Y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,

(16)

7 0 1
6 2 3
5 4 5
4 6 7

X G E G F Y A B C D Y
X G F G E Y B D A C Y
X G F G E Y C A D B Y
X G E G F Y D C B A Y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

(17)

2.3 Experimental Results and Analysis
Average run time of each implementation scheme is
obtained by running 100000 different 8x8 DCT
coefficient matrices on PC platform and the results are
given in Table 2. Because the butterfly structure in
scheme 1 and scheme 2 is not as regular as that used
in scheme 3 and scheme 4, when implemented using
SIMD instruction, a larger number of
pack/unpack/shuffle operations are needed and the
speed is rather decreased than increased. So in our
tests, we only use the compiler optimization options
for C code as a relative fair comparison. It should be
noted that although additions and shifts can be
implemented faster than multiplications, scheme 1 and
scheme 2 just have similar speed performance. This is
because on average 4 shifts and additions are needed
to replace one multiplication in scheme 2, and it may
even reduce the speed when implemented on PCs. It is
also shown that scheme 3 and scheme 4 run much
faster than the other two schemes and scheme 4 is the
fastest among all tested. Scheme 4 needs about half
the time of scheme 3 mainly because the operation
count in scheme 4 is about half of that in scheme 3. In
fact, it is shown in [4] that scheme 4 is also much
faster than some multiplier-less IDCT implementation
schemes which takes much less operations to
implement. Experimental results on other platforms
such as DSP, ASIC and corresponding analyses are
also presented in [4].

Table 2. Experimental results on PC platform

Implementation Scheme
Description

Average
Run Time

Reference floating-point IDCT
(matrix multiplication. implemented
with C)

1023ms

Scheme 1 (implemented with C) 94ms
Scheme 2 (implemented with C) 96ms
Scheme 3 (implemented with SSE2) 40ms
Scheme 4 (implemented with SSE2) 20ms

2.4 Advantages
It is well known that there are many fast IDCT/DCT
implementations incorporating the scaling factors into the
dequantization step [13]-[16]. However, the proposed
methods have the following advantages:
1. The fixed point IDCT/DCT matrix is derived from

theoretical IDCT/DCT directly, and results in
conceptually simple and straightforward design.

2. The proposed algorithms affect only the basic
IDCT/DCT functional blocks and does not entangle
with quantization/de-quantization processes. Thus
dequantization matrix is not needed and potential
loss in performance is avoided [4].

3. There is no right shift in every 1-D transform so that
different specific implementations yield exactly the
same output result. This gives flexibility of different
implementation on different platforms which can not
be offered by multiplier-less methods [13]-[19].

2.5 Further Improvements and Observations
The specific method (13,11,18) is one of the most cost
effective among all the possible methods that can
meet the accuracy requirements. However, if the strict
condition (16bit output of 1-D IDCT, 16bit signed by
signed multiplication in scheme 1, etc) is loosed, then
there are many more possible methods that can give
better precision than (13,11,18). The detailed results
are given in [20].
The following conclusions can be drawn from the
experimental results:
1. The bit widths enough for pseudo-random test in

[1] coincides with corresponding theoretical
values for 8-bit video sample data (see (11), (12),
(13)).

2. Perfect match to ideal integer output IDCT for all
“near-DC” tests will be obtained when the bit
width of the 1-D IDCT output is getting larger (16
bit or more).

3. All methods with non-integer SCALE have
“near-DC” test results equal to 1. We believe the
main reason is the two inaccurate approximated

multipliers in the upper two paths of the butterfly
structure in these cases. Further, this
approximation error will propagate to all output
terms during the final stage in the IDCT butterfly
structure shown in Figure 1.

4. The methods with SCALE equal to 13 or 14 seem
to be better than others. For example, (13,9,20)
and (14,10,21) can be chosen for very high
fidelity applications. They are comparable to the
methods in [17]-[19] considering the operation
counts using additions and shifts in the optimal
sense.

5. Different accuracy versus complexity trade-offs
can be easily achieved with same pre-defined
SCALE value by adjusting ROW_SHIFT and
corresponding COL_SHIFT according to (9). No
change of the multipliers or its
adder-shifter-representation is needed which is
required by many multiplier-less IDCT schemes
[15]-[19] [13].

3. CONCLUSION
In this paper, a systematic approach of fixed point 8x8
IDCT and DCT design and implementation is proposed
that approximate the ideal integer output IDCT and DCT
with high fidelity. Performance and complexity issues
such as bit width are discussed for different methods
using this approach. The methods discussed in this paper
can also be easily extended to IDCT and DCT with other
size.

ACKNOWLEDGEMENTS
The authors would like to thank Oscar Gustafsson for
his help.

REFERENCES
1. G. Sullivan, A. Luthra, “CFP on fixed point 8x8

IDCT and DCT standard,” MPEG output document
N7335, July. 2005.

2. ISO/IEC 11172-6, “Specification of accuracy
requirements for implementation of integer-output
8x8 inverse DCT,” FCD, March. 2005.

3. ISO/IEC, “Study of ISO/IEC 11172-6 FCD,” MPEG
output document N7546, Oct. 2005.

4. C.-X. Zhang, J. Wang, X.-H. Chen, Q. Hu, X. Li, L.
Yu, “Fixed-Point 8x8 IDCT, further result,” MPEG
input contribution M12617, Oct. 2005.

5. G. Sullivan, J. Lou, “Response to N7335 CfP on
Fixed-Point 8x8 IDCT and DCT Standard,” MPEG
input contribution M12665, Oct. 2005.

6. C. Loeffler, A. Ligtenberg, and G. S. Moschytz,
“Practical fast 1-D DCT algorithms with 11

multiplications,” Proc. IEEE Intl. Conf on Acoust.,
Speech, and Signal Proc. (ICASSP), vol. 2, pp.
988-991, Feb. 1989.

7. C. -X. Zhang and L. Yu, “Low complexity and High
Fidelity Fixed-Point Multiplier-less DCT/IDCT
Implementation Scheme,” MPEG input document
M12936, Jan. 2006.

8. A. Avizienis, “Signed-digit number representation
for fast parallel arithmetic,” IRE Trans. Electronic
Comp., vol. 10, pp. 389-400, Sept. 1961.

9. H. L. Garner, “Number systems and arithmetic,”
Advances in Computers, vol. 6. pp. 131-194, 1965.

10. A. G. Dempster and M. D. Macleod, “Constant
integer multiplication using minimum adders,” IEE
Proc. Circuits Devices Syst., vol. 141, no. 6, pp.
407-413, Oct, 1994.

11. O. Gustafsson, A. G. Dempster and L. Wanhammer,
“Extended results for minimum-adder constant
integer multipliers,” Proc. IEEE International
Symposium on Circuits and Systems. (ISCAS), vol.
1, pp. 26-29, May. 2002.

12. X. Zhou, E. Q. Li, and Y.-K. Chen, "Implementation
of H.264 Decoder on General-Purpose Processors
with Media Instructions," in SPIE Conf. on Image
and Video Communications and Processing, pp.
224-235, Jan. 2003.

13. P. Topiwala, et al, “Analysis and Summary of IDCT
Proposals to MPEG 74th Meeting in Nice,” MPEG

output document N7565, Oct. 2005.
14. Y. Arai, T. Agui, and M. Nakajima, “A fast

DCT-SQ scheme for images,” Trans. IEICE, vol.
E-71, no. 11, pp. 1095-1097, Nov. 1998.

15. Y. Reznik, H. Garudadri, H. Chung, P. Sagetong, N.
Srinivasamurthy, “Fixed Point Multiplication-Free
8x8 DCT/IDCT Approximation,” MPEG input
document M12607, Oct. 2005.

16. A. T. Hinds and J. L. Mitchell, “Fixed-Point
Discrete Cosine Transform Proposal,” MPEG input
document M12689, Oct. 2005.

17. T. D. Tran, L. Liu, P. N. Topiwala, “Fast
Fixed-Point Multiplier-less DCT/IDCT
Approximation Based on the Lifting Scheme,”
MPEG input document M12508, Oct. 2005.

18. T. D. Tran, L. Liu, P. N. Topiwala, “Fast
Fixed-Point Multiplier-less DCT/IDCT
Approximation Based on Loeffler Structure,”
MPEG input document M12509, Oct. 2005.

19. T. D. Tran, L. Liu, P. N. Topiwala, “Fast
Fixed-Point Multiplier-less DCT/IDCT
Approximation Based on Loeffler and ANN
Structure,” MPEG input document M12510, Oct.
2005.

20. C. -X. Zhang, J. Wang, L. Yu, “Extended Results
for Fixed-Point 8x8 DCT/IDCT Design and
Implementation”, MPEG input contribution M12935,
Jan. 2006.

Fig. 1. IDCT Butterfly structure (including rounding)

Fig. 2. Efficient 8x8 matrix multiplication – I

Fig. 3. Efficient 8x8 matrix multiplication – II

